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Abstract—This paper presents an approach for deriving an 
English language description of a C program directly from the 
source code. Two levels of translation are presented: cliché 
extraction, to identify commonly used programming 
constructs, and concept abstraction, to deduce the purpose of 
the program. Concept abstraction can serve as a basis for 
intelligent query support for providing relevant 
documentation. In this paper, we compare prominent works 
on program understanding systems, and propose an efficient 
method for plan representation and storage of plans in plan 
library, as an alternate approach to program recognition 
using flow graph parsing. 
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I.  INTRODUCTION 
Program recognition falls under both Software 

Engineering and Artificial Intelligence. In order to 
understand a program, a programmer attempts to recognize 
familiar parts, called clichés, and hierarchically builds an 
understanding of the entire program based on these parts. 
For example, a programmer may recognize that a bubble 
sort program is being used to order integers. The data 
structure used to store these integer elements may be 
recognized as having been implemented as an array of 
entries. This method to understand programs, called 
‘analysis by inspection’, has been developed by Rich. 
‘Program Recognition’ encompasses identification of 
commonly used algorithmic fragments, called clichés, and 
data structures in a program. Such a program recognition 
system is schematically shown in Fig. 1.  Here, we present 
a system for C which performs program recognition 
automatically. The system takes a source code as input and 
generates a hierarchical description of clichés and data 
structures of which the code is constructed. Such a 
description may be useful in activities such as debugging, 
modifying, maintaining and documenting the program. 
Aside from its various practical applications, program 
recognition is a worthwhile concept to study from a 
theoretical standpoint in Artificial Intelligence. It can help 
us model how programmers understand programs based on 
their accumulated experience in programming. It is also a 
problem in which the representation of knowledge is the 
key to the efficiency and simplicity of the techniques used 
to solve the problem. 
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Fig. 1. A simple program understanding system 

II. PROGRAM UNDERSTANDING SYSTEMS 
     Work on the development of program understanding 
systems had begun since the early 1970s. One of the first 
systems to tackle the problem of program recognition was 
developed in the early 1970s by Gregory Ruth.  Some of 
the program understanding systems that were developed in 
the 1980s are PUDSY, LAURA, PROUST and TALUS. 
The ones developed in 1990s are Recognizer, PAT, 
BAL/SRW and DUDU. The latest systems developed in 
2000s are Conceiver and Conceiver++. We will discuss and 
compare these systems below. 

A. Ruth’s System 

One of the first systems to highlight the area of program 
understanding was developed by Gregory Ruth in the early 
1970s. This system took the program code and a task 
description of the code as its input. It then tried to deduce 
the algorithm implemented in the code. This was achieved 
by matching the input code against several implementation 
patterns, which the system stored as a library. These 
implementation patterns were in the form of a set of 
characteristics about the code.  

B. PUDSY 

     PUDSY was developed at the University of SUSSEX in 
1980s. Apart from the source code, PUDSY took, as input, 
information about the purpose of the code that it was 
analyzing, in the form of program specification, which 
described the effects of the code. This system did not use 
this description for searching clichés. Rather, it analyzed 
the program and then compared the results of the analysis 
to the specification. Differences resulting from such a 
comparison were pointed out as bugs. PUDSY was used to 
analyze Pascal programs. It first used heuristics to segment 
a code into chunks, which were manageable units of code, 
such as loops. It then described the flow of information 
between these chunks by producing assertions about the 
values of the output variables of each chunk. These 
assertions were produced by recognizing familiar patterns 
of statements, called schemas, in the chunk. Each schema 
was related to a set of assertions describing their effects on 
the involved variables. For unrecognized chunks, assertions 
were produced by symbolic evaluation. 

C. LAURA 

     Anne Adam and Jean-Pierre Laurent developed LAURA 
at the University Of Caen, France in 1980s. LAURA 
received information about the program to be analyzed in 
the form of a model code, which correctly performed the 
task that the code was intended to do. It then compared the 
graphs of these two codes and treated mismatches as bugs. 
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As nodes of the graphs were really statements of the code, 
the graph matching was essentially statement-to-statement 
matching. LAURA differed from PUDSY in that it 
represented source codes as graphs. This representation 
allowed LAURA to abstract the syntactic features of the 
programming language. Plans were not used during the 
process of understanding. Instead, programs were 
transformed to make them more reliable for comparison. 

D. PROUST 

     PROUST was a program for debugging Pascal programs 
written by novice programmers Johnson and Soloway in 
1985 []. PROUST required a program and a non-
algorithmic description of the program requirements as 
input. It produced the most likely mapping between 
requirements and the program as output. It used plans to 
represent stereotypical code fragments. Plans were 
represented as templates that consisted of three items: a 
Pascal statement, a sub-goal to be implemented as a set of 
statements, and a reference to a component of another plan. 
Plans could also contain slots indicating assertions about 
the plan. The Prior-Goals slot indicated other goals that had 
to be met before this plan could be activated, whereas the 
Posterior-Goals slot indicated goals to be added to the 
agenda after the plan is matched. Thus, these slots were 
used to control the goal-processing order when PROUST 
was executed. 

E. TALUS 

     TALUS was developed at University of Texas in 1986. 
It was designed to analyze programs, written in LISP, 
involving recursive definition of data structures. The main 
purpose of this system was to support automatic debugging 
of programs. TALUS was required to first recognize the 
input program before it could associate it with known 
reference functions. It also required a precise description of 
the problem to be recognized. TALUS separated 
knowledge representation into three levels: tasks, 
algorithms and functions. Tasks were basic programming 
assignments, generally given to students. TALUS had 18 
tasks, each at a comparable level of abstraction to ‘write a 
function returning a list of all the atoms in a tree’. TALUS 
assumed that the tasks were known prior to their execution. 
TALUS performed four steps to analyze students’ 
programs: code simplification, algorithm recognition, bug 
detection and code correction. Code simplification put the 
program in If-Normal form and transformed it into a 
simpler Lisp dialect. In algorithm recognition, TALUS 
selected the algorithm that matched the input code. Once 
the algorithm is selected, reference functions were 
associated with the program’s functions. In bug detection, 
TALUS determined whether the student’s program and the 
reference program were equivalent, using symbolic 
evaluation. If no equivalence existed, TALUS would try to 
infer which bugs were present in the student’s program. 
Symbolic evaluation considered the program in If-Normal 
form. The system derived conditions necessary to reach a 
leaf for the student’s function and the reference function, 
and grouped them into cases. It then took the cases derived 
from the reference functions, and applied them to the input 
function, and vice versa. 

F. Recognizer 

     The Recognizer was developed at MIT Artificial 
Intelligence Laboratory as a part of the Programmer’s 
Apprentice Project. The Recognizer only required the 
source code in order to recognize the familiar algorithmic 
clichés, unlike the previously described systems. It 
performed four main activities. Firstly, it analyzed the 
source code. Secondly, it converted the program plan into 
its corresponding flow graph. Thirdly, it parsed the flow 
graph with a grammar derived from a library of clichés. 
Lastly, it checked constraints on the matched flow graph. 
The nodes of the flow graph would represent operations 
and its edges would represent data flow. The recognizer 
performed bottom-up parsing of the input code to recognize 
clichés, and from these built an understanding of the entire 
program. The cliché library used by Recognizer was 
originally developed by Charles Rich to support the 
Programmer’s Apprentice. This library provided taxonomy 
of standard computational fragments and data structures 
represented as plans. There were two forms of clichés, 
namely, plans and implementation overlays. Plans were 
used to represent data structures and algorithms. Plan nodes 
consisted of primitive forms, which were irreducible, or 
nodes corresponding to other plans. Implementation 
overlays represented alternative ways of expressing the 
same concept, usually from an abstract into a concrete 
form. 

G. PAT 

     PAT (Program Analysis Tool), like Recognizer, 
operated on code only. It converted the source code into a 
set of programming language independent objects, called 
events, using a parser. Then, using the event base, it 
recognized higher level events that represented function-
like concepts. After higher level events were recognized, 
they were added to the event set. The process of 
recognition was repeated until no more higher level events 
were recognized. The final event set was presented to the 
user. This set presented the purpose of the program. A 
deductive-inference-rule engine was the main component 
of PAT. This engine used a library of program plans, stored 
as inference-rules in the plan base. These were used to 
derive new, high level events. A plan parser was used to 
parse the plans. These plans contained the understanding, 
paraphrasing, and debugging knowledge. When a new 
event was generated, it triggered other rules to fire, causing 
the generation of more events.  

H. BAL/SRW 

     BAL/SRW was an interactive knowledge-based 
environment which supported the process of recapturing 
and uncovering Assembly language logic and design of the 
program in order to reengineer it. BAL/SRW required only 
the source code as its input. The output from the system 
could merge with the new specification within a CASE tool 
in the forward phase of system re-engineering. BAL/SRW 
first performed a quick analysis for the Assembly language 
code in order to collect primary information about it. After 
information collection, the program was parsed in order to 
build the program knowledge base. The obtained 
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knowledge base represented the program information in the 
form of objects. Control flow graph of the program was 
derived using a control flow generator. The plan 
representation used by BAL/SRW used templates that were 
assembly fragments of the source code. The control flow 
was implicitly specified by the order of the templates. 

I. DUDU 

     DUDU (Debugging Using Device Understanding) was 
developed for the purpose of debugging in 1991 at Ohio 
State University. Its representation of clichés was a text-
based representation of plans that included goals, 
components for achieving them and casual links to show 
how the components achieve the goals. The functional 
representation was used to specify which parts of the 
program’s clichés are supported by which parts of its plan 
representation. An important advantage of this 
representation was that it provided information which could 
make it easier to tolerate variation in how a function was 
achieved. As it explicitly described the purpose of each part 
of a cliché in the context of a larger of correctness, if some 
part of the cliché did not match the program, the functional 
representation described the function of that part. It thus 
made it possible to prove that the mismatch portion of the 
program still achieved this function. 

J. Conceiver 

Conceiver is a program understanding system which 
consists of five components: user interface, parser, 
understanding inference, document generator and plan 
base. The parser performs the task of translating the source 
program into a language independent representation to 
generate corresponding plans, which are then stored in the 
plan base. Once the language independent representation is 
generated, the understanding inference performs 
recognition. The recognition process starts with recognition 
of individual statements and then combines all such 
matches to perform comparison with the plans in the plan 
base. After plan matches are found, the documentation 
generator produces documentation by considering the 
hierarchy of recognized plans. 

K. Conceiver++ 

Conceiver++  is program recognition for source codes 
written in JAVA. It is a line by line program understanding 
system which generates a description for each line of input 
code. The main task of this system is to find plans from the 
plan base that match the statements in the source code. If a 
match is found then the corresponding explanation will be 
generated. Else, the debugger in the system tries to find 
errors in the code that resulted in no match being found. 
This system takes a program code as input. The input 
program is parsed and transformed into an abstract syntax 
tree. In the abstract syntax tree, each node represents a 
statement from the code. These nodes are then used for 
construction of a control flow graph which shows the 
control and data flow of the source code. The control flow 
graph is then compared with the plans in the plan base to 
generate the description. 

III. OUR APPROACH 
     We have attempted to simplify the process of 

program understanding by using simpler and easy-to-use 
representation of plans. The structure or the underlying 
framework of a C program can be recognized by removing 
unnecessary programming details and retaining only its 
clichés. An outline of the input source code, thus obtained, 
can then be adorned with necessary and sufficient 
information to understand the purpose of the code. Let us 
know take a look at the different phases an input program 
will undergo to finally generate an English language 
description of itself. This is schematically shown in Fig. 2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  2. System Architecture 

A. Plan String Generation 

The system takes only the source program as input. This 
program is parsed to generate tables in Microsoft Access 
2007. These tables are as shown in Example (1). 
Information about clichés, i.e. all programming constructs, 
user defined functions and identifiers, gets stored in these 
tables. In the next step, this tabular information is 
processed to derive the plan strings.  

Plan string is basically an outline of the input program 
in terms of the clichés used. These clichés include 
functions, loops (for, while, do while) and branch 
statements (if, if-else, switch). To generate a proper outline 
of the input program, relative positioning of constructs is 
represented by their ‘degree of nesting’. The ‘degree of 
nesting’ is a natural number which reflects the extent to 
which a block or a construct is contained within the 
outermost block or construct.  

B. Flexible Plan 

The system’s parser identifies all the operations, 
expressions and assignment statements in the input source 
code and stores them in a separate table. All variable 
dependencies in these statements are eliminated. These 
generalized statements are called plans. The plan library 
already stores known operations in the same generalized 
format. Plans obtained from the input source code are then 
searched for in the plan library with the help of the code’s 
plan string. As the length of operation statements is 
variable, so will be the length of corresponding plans. To 
meet this variability, we make use of MongoDB for the 
storage of plans. MongoDB is an open-source document 
database which allows the construction of dynamic 
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schemas and thus helps in the storage of flexible length 
plans. 

C. Plan Matching 

The generalized statements obtained after processing the 
input code are then compared with the plans present in the 
plan library. The number of comparisons is limited by 
selecting only those plans from the plan library whose plan 
string matches the plan string of the input code. Once such 
plans are selected, comparison is performed and the 
description corresponding to the matched plan is used as 
the functionality description for that particular block of 
code.  

IV. ILLUSTRATIVE EXAMPLE 
A. Plan String Generation  
   Here we explain how the system produces a description 
of a C code for selection sort. 
 

Example 1: 

//Selection Sort 

#include<stdio.h> 
int main() 
{ 
     int s,i,j,temp,a[20]; 
     printf("Enter total elements: "); 
     scanf("%d",&s); 
     printf("Enter %d elements: ",s); 
     for(i=0;i<s;i++) 
          scanf("%d",&a[i]); 
  for(i=0;i<s;i++) 
  { 
        for(j=i+1;j<s;j++) 
        { 
              if(a[i]>a[j]) 
              { 
                    temp=a[i]; 
                    a[i]=a[j]; 
                    a[j]=temp; 
              } 
        } 
  } 
  printf("After sorting is: "); 
  for(i=0;i<s;i++) 
       printf(" %d",a[i]); 
  return 0; 

} 
 

TABLE I. ASSIGNMENT TABLE 
Assignment Table 

Statement ID Line Number Statement 

0 20 temp = a[i] 

1 21 a[i] = a[j] 

2 22 a[j] = temp 

 

 

TABLE II. FUNCTION TABLE 
Function Table 

Function 
ID 

Function 
Name 

Return 
Type 

No. of 
Parameters 

Start 
Line 
No. 

End 
Line 
No. 

0 main int 0 2 32 

 

TABLE III. IDENTIFIER DECLARATION TABLE 
Identifier Declaration Table 

 
Var 
ID 

 Name 
Initial 
Value 

Scope Type 
Identifier 
Pointer 

Line 
Number 

0 s 0 Main int -1 5 

1 i 0 Main int -1 5 

2 j 0 Main int -1 5 

3 temp 0 Main int -1 5 

4 a[20] 0 Main int -1 5 

 
TABLE IV. INCLUDE TABLE 

Include Table 
Include 

ID 
File 

Name 
Line 
No. 

0 stdio 1 

 
TABLE V. LOOP TABLE 

Loop Table 

Loop 
ID 

Name 
Start 
Line 
No. 

End 
Line 
No. 

0 For 11 24 

1 For 14 25 

2 For 16 24 

3 For 28 31 

 
TABLE VI. PLAN STRING TABLE 

Plan String Table 

Plan 
No. 

Plan String 

0 main/for/for//for///if/for 

 
The number of slashes in the plan string denotes the degree 
of nesting of the construct that follows.  
 
B. Plan Matching  
After the plan string is produced, we consider the 
operations that are taking place within the recognized 
constructs. The generalized operation statements are 
compared with those stored in the following table which 
forms the core of the plan library.  
 

TABLE VII. PLAN MATCHER TABLE 
 

Plan Matcher Table 
Plan String Match Description

main/for/for//for///if/for scan| 
loop|C1|0|C1|<|T1|C1|I1| 
loop|C2|C1+1|C2|<|T1|I1| 

if|AR[C1]|>|AR[C2]| 
swap|AR[C1]|AR[C2]| 

print 

Selection Sort 
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The program’s plan string is compared with those listed in 
the table. The result of this comparison may give more than 
one perfect matches. For all such matches, we check 
whether all the generalized operation statements are present 
in the ‘Match’ field, in the same order. When such a match 
if found, its corresponding description is adorned with 
English language phrases and is output to the user. In case 
no match is found, the user is prompted with appropriate 
message to either make changes in his code or to verify the 
code for its syntax.  
In the above table, C1, C2, T1 and AR denote the 
generalized variables; scan, loop, if, swap, print denote the 
generalized operations; I1 is used to denote increment by 1; 
0 and C1+1 following C1 and C2 respectively, denote the 
initial value of variables C1 and C2; C1<T1 and C2<T1 are 
loop conditions; separators denote the flexible storage in 
MongoDB which allows the ‘Match’ field to be as long as 
required.  
Operations such as swap and scan are recognized using 
another table that stored commonly used operations in the 
same generalized format as used in the above table. If an 
operation is new to the system, the user will be prompted to 
add it to the library along with its descriptive notation. This 
notation is used to replace the entire corresponding 
operation into a word or two, thus trimming the program. 
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